Nonparametric survival analysis of epidemic data
نویسنده
چکیده
This paper develops nonparametric methods for the survival analysis of epidemic data based on contact intervals. The contact interval from person i to person j is the time between the onset of infectiousness in i and infectious contact from i to j, where we define infectious contact as a contact sufficient to infect a susceptible individual. We show that the Nelson-Aalen estimator produces an unbiased estimate of the contact interval cumulative hazard function when who-infects-whom is observed. When who-infects-whom is not observed, we average the Nelson-Aalen estimates from all transmission networks consistent with the observed data using an EM algorithm. This converges to a nonparametric MLE of the contact interval cumulative hazard function that we call the marginal Nelson-Aalen estimate. We study the behavior of these methods in simulations and use them to analyze household surveillance data from the 2009 influenza A(H1N1) pandemic. In an appendix, we show that these methods extend chain-binomial models to continuous time.
منابع مشابه
Effective Factors in the Survival Time of Covid-19 Patients in Three Epidemic Waves: A Prospective Cohort Study
Background and Objectives: This study aimed to investigate the effective factors in the survival/hazard time of Covid-19 patients in three waves of epidemic. Methods: All 880 Covid-19 patients were included in this prospective cohort study using the census method. Polymerase chain reaction was used to diagnose Covid-19. The survival status of these patients was followed up for 4 months. The...
متن کاملEmpirical Likelihood Approach and its Application on Survival Analysis
A number of nonparametric methods exist when studying the population and its parameters in the situation when the distribution is unknown. Some of them such as "resampling bootstrap method" are based on resampling from an initial sample. In this article empirical likelihood approach is introduced as a nonparametric method for more efficient use of auxiliary information to construct...
متن کاملبرآورد تابع بقای شرطی زمان شکست بهشرط یک متغیر کمکی زمانمتغیر با مشاهدات سانسورشدهی بازهای
In this paper, we propose an approach for the nonparametric estimation of the conditional survival function of a time to failure‎ ‎given a time-varying covariate under interval-censoring for the failure time. Our strategy consists in‎ ‎modeling the covariate path with a random effects model, ‎as is done in the degradation and joint longitudinal and survival data modeling&lrm...
متن کاملApplication of Survival Tree Model in Determining Affecting Factors in Breastfeeding Duration
Background and Purpose: Survival tree model is a nonparametric method which can be used to identify the affecting factors from a specific time to the onset of an event. In this method, the categories are selected according to the most important factors. The purpose of this study was to determine the factors affecting the duration of breastfeeding in mothers and introduce the homogeneous subgrou...
متن کاملExamining Effective Factors on Duration Time of Recommitment Using Cox's Proportional Hazard Model
Abstract. Recently, in most of scientific studies, the use of survival analysis is performed for examining duration time models. One of the important applications of survival analysis is the study of recommitment crime in criminology which has not yet been considered in Iran. So, with attention to the necessity and importance of predicting recommitment time and the analysis of duration model...
متن کامل